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Abstract

Due to complexities and genetic heterogeneities of biological phenotypes, robust computational approaches are desirable to achieve
high generalization performance with multiple classifiers, perturbations of the data structures, and biological interpretations. The
purpose of this study is to extend our developed ensemble decision approach to distinguish multiple heterogeneous phenotypes and
to elucidate the underlying molecular bridges that intertwine the subtypes. Our work identifies the significant molecular mechanisms
(disease-relevant genes and functions) that underpin the complex molecular mechanisms for distinction between multiple phenotypes.
Feature genes and hierarchical gene cores identified by our method have achieved high accuracy in the classification of multiple pheno-
types. The results show that the proposed analysis strategy is feasible and powerful in the classification of biological subtypes and in the
explanation of the molecular connections between clinical phenotypes. Biological interpretations with Gene Ontology revealed concerted
genetic pathways for some lymphoma subtypes.
© 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in
China Press. All rights reserved.
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ments. Such a process involves a key step of biomarker
identification, which is expected to be closely related to
the disease. A most important task of these identified genes
is that they can be used to construct a classifier which can

1. Introduction

Complex diseases are the result of the collective actions
of many genetic and non-genetic factors; therefore, the

genetic dissection of complex diseases should be carried
out by a new systematic technology. Gene expression
microarray is an efficient and high throughout method
for genetically profiling diseases and their associated treat-
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effectively diagnose diseases and even recognize the disease
subtypes. Binary classification, for example, for the
diseased or healthy, in microarray data analysis has been
successful; while multi-class classification, such as cancer
subtyping, remains challenging. The patterns of up-regula-
tion or down-regulation of gene activities can serve as
secondary endpoints of biomarkers [1], and the method
of finding such biomarkers is actually the application of
traditional feature selection methods in the field of molec-
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ular biology and life sciences. Feature selection aims to
pick out d features from D features (D > d) that can best
discriminate between heterogeneous samples [2].

Traditional feature selection methods are devoted to
producing a small set of biomarker genes which can be
used in classifier construction such as linear discrimination
analysis, nearest neighbor models, support vector
machines, and logistic regression models [3-5]. These gene
selection methods typically find the best feature subset;
however, researchers cannot always get a good classifying
performance and biological comprehension because such
feature selection methods focus on finding the best feature
subset which contains a few genes and which is also sensi-
tive to many factors such as learning algorithms and train-
ing samples.

It is important to point out that most of these gene selec-
tion methods and the associated classifiers are usually
worked on two-class datasets, though they can be theoret-
ically extended to multi-class datasets through one-versus-
all (OVA). The methods have been tested on multi-class
dataset(s) [3,4].

Using ensembles of base classifiers to improve classify-
ing performance has been a hot topic of machine learning
[6]. While binary classification has been extensively
explored, multi-class classification remains challenging in
microarray data analysis. In this work, we focus on gene
selection for multi-class classification and we demonstrate
the power of the proposed method by applying it to the
identification of a cancer subtype. We have extended our
newly developed ensemble decision approach [7] to the

analysis of multiple heterogeneous phenotypes and to elu-
cidate the underlying molecular mechanisms that inter-
twine the phenotypes. Rather than simply maximizing
prediction accuracy, we further identify the genes that are
most relevant to a disease by retrieving ‘redundant’ genes
which are excluded during the course of feature selection
but actually are strongly relevant to the disease. Besides
analyzing the role of key genes, we also unravel the molec-
ular mechanisms of multiple phenotypes at the function
level by mapping genes onto Gene Ontology [8-10].

2. Methods
2.1. Ensemble of feature selection

The whole process of ensemble of feature selection is
simply depicted in Fig. I and described as follows.

The feature genes of the numerous subtypes of the lym-
phoma datasets are heterogeneous in feature space, which
shows that individual genes are of unequal importance in
different regions of the whole feature space. In our work,
a multi-class problem is firstly transformed into a two-class
{the positive and the negative) problem, more specifically,
the positive samples are gathered from the samples of a cer-
tain lymphoma subtype, while the negative samples are col-
lected randomly from the other lymphoma subtypes. The
training sets and the test sets are achieved by boosting
and randomly grouping the positive and the negative sam-
ples. Sets of original feature subsets are acquired by deci-
sion tree method, each feature subset G; (¢ =1, 2, ..., C

Multi-class samples
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Fig. 1. Ensembles of feature selection of multiple phenotypes based on 4026 genes.
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j=1,2, ..., kec)includes the split nodes and split rule in
one decision tree, and can discriminate samples of the posi-
tive and the negative, where C denotes the number of sub-
types, and j denotes the serial number of a feature subset.
In this paper, we do not differentiate between feature sub-
sets and decision trees clearly, that is, one decision tree cor-
responds to one feature subset. C original feature subsets
constitute the original forest.

Then the feature subset with é > 0.6 is picked out as ‘fine
subset’ G7 (¢=1,2,.... C, j=1,2,..., kc).

d=2xpxr/(p+r)

where 4 is the classifying performance of each feature sub-
set G;f under supervised learning, while p = TP/(FP + TP),
r=TP/(FN + TP), TP is true positive, FP is false positive,
TN is true negative, and FN is false negative. The ¢ is high
if both false positive (FP) and false negative (FN) are low.
Consequently, C fine feature subsets constitute the fine
forest.

The next step is to ensemble feature genes. Genes with
the high appearance frequency in the fine feature subsets
are recognized as feature genes because they do not depend
on the composition of training samples. The algorithm
which we developed on the basis of algorithm Mining Core
[11]is applied to determine gene cores in which high-fre-
quency genes are grouped together. The inputs of this algo-
rithm are the set of fine feature subsets, if there are genes
shared by at least 2 feature subsets, these genes constitute
one gene core. Moreover, we take gene cores found above
as the input of the algorithm, thereby, the output is a group
of hierarchical gene cores Core, Core;, ..., Core, .

Feature genes and gene cores are selected by the method
of ensemble of the feature selections, but there are still
some genes that are never selected because of their redun-
dancy relative to the selected genes, namely their expression
profiles are similar to those of selected genes. However.
genes with similar expression profiles are inclined to be in
the same metabolic pathway, same signal transduction
pathway or be in the different components of a protein
complex [12-14]. Without these redundant genes it would
be difficult to understand the whole process of changes of
a disease at the molecular level. Thus, we delete selected
genes and perform the previous work repeatedly to retrieve
more genes until the classifying performance no longer falls
in five consecutive repeats.

Moreover, feature genes selected by a decision tree may
not be up-regulated or down-regulated in the samples of a
certain lymphoma subtype. So we further filter genes of
normal versus lymphoma subtypes by Student’s s-test [15].

2.2. Biological evaluation of feature genes

Based on gene ID and three other databases, GenBank
[16], Unigene [17,18] and LocusLink [19], feature genes
are mapped into Gene Ontology (GO). Fisher test [15] is
applied to get function terms in GO with significance level
of 0.05. The feature genes enriched in the function terms

are partly selected for biological evaluation. The function
terms belonging to different lymphoma subtypes can help
us understand the relationship between the disease and
function.

3. Results
3.1. Lymphoma dataset

The lymphoma expression profile dataset we have used
[20,21] includes 86 samples of five classes and 4026 genes:
21 GCB-like-DLBCL samples (germinal centre B-like
DLBCL) (class 1), 21 AB-like-DLBCL samples (activated
B-like DLBCL) (class 2); 11 CLL samples (chronic
lymphocytic leukaemia) (class 3); 9 FL samples (follicular
lymphoma) (class 4) and 24 normal samples {(class 5).
Samples in different normal classes were merged into one
class for their small sample numbers, and samples without

Table 1
The step-by-step algorithm of ensemble of the feature selection

Step 1. Randomly split all samples into two parts. One part (1/5) is the
validation set which never takes part in feature selection process.

Step 2. The other part (4/5) is randomly divided into training set and
testing set. Threefold cross-validation technology is used.

Step 3. Samples are transformed into those with the two-class label.
Boosting builds a series of feature subsets belonging to each class while
training set is fixed.

Step 4. Pick out fine feature subsets belonging to each class under the
direction of testing set’s classitying performance { > 0.6).

Step 5. Repeat Step 2 to Step 4 twenty times to achieve a series of fine
feature subsets belonging to each class {G{ G5 ..., GA‘} (C=117,
.5)

Step 6. Repeat Step 1 to Step 5 ten times.

Step 7. Achieve ten serics of {G!, 6. ... ;} after above steps [rom
Step 1 to Step 6. Calculate frequency of cach gene 1n each series of
{GS.GE,... G5 } and pick out genes with frequency f > 2 to enter
feature genes set { F,}. Then we calculate the accumulative frequency of
genes which appeared in ten series of {F,} and pick out genes with a
frequency higher than nine times to enter final feature genes set {/F,}.

Step 8. Mine hierarchical gene cores.

Step 9. Classifying performance evaluation using the validation set.

Step 10. Delete selected genes and repeat the previous work again and
again to retrieve more genes and add to {/F.}.

Step 11. Biological evaluation of feature genes in the set {fF.} and gene
cores.
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Fig. 2. Retrievial of the redundant genes while deleting selected genes and
repeating the method of ensemble feature selection again and again.
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Table 2
Gene cores of different phenotypes with high appearance frequency
Phenotypes Gene cores  Appearance  Gene ID Gene name
trequency
GCB-like-DLBCL  Gene core I 22 GENEI1865X  Unknown UG Hs.124304 ESTs; Clone = 1358064
GENE2758X  Unknown; Clone = 682995
Gene core 2 19 GENEI836X  Unknown UG Hs. 190487 ESTs: Clone = 1358277
GENE2758X  Unknown; Clone = 682995
Gene core 3 19 GENE3165X  Unknown; Clone = 1339226
GENE2758X  Unknown; Clone = 682995
Gene core 4 14 GENEI1835X  Unknown; Clone = 1357915
GENEI1836X  Unknown UG Hs.190487 ESTs; Clone = 1358277
Gene core 5 11 GENE1836X  Unknown UG Hs.190487 ESTs: Clone = 1358277
GENE1933X  Unknown UG Hs.221606 ESTs; Clone = 1358190
AB-like-DLBCL Gene core 1| 24 GENE3939X  Unknown UG Hs.169081 ets variant gene 6 (TEL oncogene); Clone = 1355435
GENEI1639X  OSF-20s = osteoblast-specific factor = putative bone adhesion protein with
homology with the insect
Gene core 2 22 GENEI1836X  Unknown UG Hs.190487 ESTs; Clone = 1358277
GENEI1639X  OSF-20s = osteoblast-specific factor = putative bone adhesion protein with
homology with the insect
Gene core 3 22 GENEI835X  Unknown: Clone = 1357915
GENEI1639X  OSF-20s = osteoblast-specific factor = putative bone adhesion protein with
homology with the insect
Gene core 4 12 GENEI1835X  Unknown; Clone = 1357915
GENE3939X  Unknown UG Hs.169081 ets variant gene 6 (TEL oncogene); Clone = 1355435
Gene core 5 10 GENE3067X  Similar to dead box, Y isoform (DBY) = probable ATP-dependent RNA helicase;
Clone = 1350869
GENEI1639X  OSF-20s = osteoblast-specific factor = putative bone adhesion protein with
homology with the insect
CLL Gene core I 23 GENEI1835X  Unknown; Clone = 1357915
GENE2395X  Unknown UG Hs.59368 ESTs; Clone = 1353778
Gene core 2 17 GENE2039X  Unknown UG Hs.29052 ESTs, Highly similar to (defline not available 4103857) [M.
musculus]; Clone = 1316906
GENE2395X  Unknown UG Hs.59368 ESTs; Clone = 1353778
Genecore3 7 GENEI1835X  Unknown; Clone = 1357915
GENE2039X  Unknown UG Hs.29052 ESTs, Highly similar to (defline not available 4103857) [M.
musculus]; Clone = 1316906
GENE2395X  Unknown UG Hs.59368 ESTs: Clone = 1353778
Genc core 4 7 GENEI836X  Unknown UG Hs.190487 ESTs; Clone = 1358277
GENEI1141X MAPKKKS = ASK1 = mitogen-activated kinase kinase kinase 5; Clone = 504877
GENE2319X  Unknown UG Hs.125719 ESTs; Clone = 1350862
Genecore 5 5 GENE3072X  APC = adenomatous polyposis coli protein; Clone = 125294
GENE2501X  Titin; Clone = 1251981
FL Genecorel 9 GENEI1933X  Unknown UG Hs.221606 ESTs; Clone = 1358190
GENE2310X  Unknown; Clone = 703659
Gene core 2 7 GENEI835X  Unknown; Clone = 1357915
GENE3068X  Unknown UG Hs.126784 ESTs; Clone = 826721
Genecore3 7 GENEI835X  Unknown; Clone = 1357915
GENE3068X  Unknown UG Hs.126784 ESTs; Clone = 826721
GENE3704X  CD45; Clone = 239287
Gene core 4 7 GENE3068X  Unknown UG Hs.126784 ESTs; Clone = 826721
GENE2415X  Unknown; Clone = 1289937
Genecore 5 5 GENEI1835X  Unknown; Clone = 1357915
GENE2109X  [L-4 receptor alpha chain; Clone = 714453
Normal Genecore 1 56 GENEI836X  Unknown UG Hs.190487 ESTs: Clone = 1358277
GENE3795X  AIM2 = interferon-inducible protein = associated with chromosome 6-mediated
suppression of melanoma
Gene core 2 51 GENE3073X  SECI14-like; Clone = 685336
GENE3795X  AIM2 = interferon-inducible protein = associated with chromosome 6-mediated
suppression of melanoma
Gene core 3 36 GENE!835X  Unknown; Clone = 1357915
GENE3795X  AIM2 = interferon-inducible protein = associated with chromosome 6-mediated

suppression of melanoma
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Table 2 (continued)

Phenotypes Gene cores Appearance Gene ID Gene name
frequency
Gene core 4 28 GENE]931X Unknown UG Hs.123650 ESTs; Clone = 1336983
GENE3795X AIM?2 = interferon-inducible protein = associated with chromosome 6-mediated
suppression of melanoma
Gene core 5 28 GENEI1835X Unknown; Clone = 1357915
GENEI836X Unknown UG Hs. 190487 ESTs; Clone = 1358277

a typical expression profile were deleted. Most of the
cDNA clones on the microarray were chosen from a germi-
nal centre B-cell library because of the suspected impor-
tance of the germinal centre B-cell to the genesis of non-
Hodgkin's lymphomas.

3.2. Experiment

The whole work is summarized in Table 1. All algo-
rithms in this paper are achieved using MATLAB 6.5
and JAVA 1.4, The retrieval process of the redundant
genes is described in Fig. 2. In this figure, classifying per-
formance falls when feature genes are deleted, and this
retrieval process stops at the point where the accuracy
has no apparent decline in the consecutive five repeating
process. We retrieved the deleted genes before the point
where these genes become important for classifying and
biological interpretations.

3.3. Establishing molecular mechanisms of lymphoma
subtypes

The target phenotypes are multiple subtypes of lym-
phoma. Thus, our work is conducted to identify the signif-
icant molecular mechanisms (disease-relevant genes and
functions) that underpin the complex molecular mecha-
nisms for the distinction of multiple phenotypes. Gene
cores of multiple phenotypes are shown in Table 2.
Although many of the genes lack the function annotation,
these genes are worthy of further investigation.

Still some other core genes are intriguing: Osteoblast-
specific factor (OSF-20s), a putative bone adhesion protein
with homology in insects and named GENE[639X, is a key
gene of five gene cores that are strongly related to AB-like-
DLBCL samples and over-expressed in them. Gui et al. [22]
developed a threshold gradient descent method for the Cox
model to select genes that are relevant to DLBCL patients’
survival. An osteoblast-specific factor is included in the
genes that were identified to be related to the risk of death,
which belongs to the lymph node signature defined by
Rosenwald et al. [23] using clustering analysis of genes.
Osteoblast-specific factor-2 has been described as a tran-
scription factor of osteopontin (OPN), the protein associ-
ated with the progression and metastasis formation of
various cancer types. Our work confirmed that OSF-2os
is over-expressed in AB-like-DLBCL samples, and this
finding might well be used for an understanding of the pro-
gression and metastasis of AB-like-DLBCL.

GENE2395X is a strongly relevant gene for the distinc-
tion of CLL samples from other samples and appears in
three gene cores. Moreover, GENE2395X is mapped in
MAPK signaling pathway in KEGG database. Another
gene, GENE1141X, mitogen-activated kinase kinase kinase
5, is also relevant to CLL samples. This implies that the
MAPK signaling pathway is affected in CLL development
and progression, and both GENE2395X and GENE1141X
play the key role in this pathway. More evidence described
in the next text confirms that the MAPK signaling pathway
is activated abnormally. Another core gene, Titin, was
reported to be over-expressed in CLL samples [23].

BCL-2 gene in the set {fF;} associated with CLL
samples is strongly over-expressed. Multiple lines of
evidence from molecular biological studies imply that the
over-expression of this gene occurs in many forms of
leukaemia, and so contributes to the relentless accumula-
tion of lymphocytes that fail to die and to their resistance
to chemotherapy. But in our signature, over-expression
of BCL-2 is only typical in CLL samples. High expression
of the antiapoptotic protein BCL-2, a profound inhibitor
of programmed cell death, has been reported in the vast
majority of B-cell CLLs [24-26]. Fegan's research [27]
has shown that BCL-2 protein is one of the several proteins
that regulate cell death. BCL-2 protein inhibits pro-
grammed cell death and is consistently over-expressed in
B-CLL patients. Over-expression of BCL-2 is present in
over 90% of B-CLL patients.

For AB-like-DLBCL and GCB-like-DLBCL, it is hard
to capture more information on the molecular links. The
main causes are that some feature genes are lacking in func-
tion annotation and the significant function concepts of
GO mapped by remnant feature genes are not specific
enough to explain anything.

For FL and CLL, We further analyzed function
concepts mapped by these relevant genes to understand
the disease mechanism at the functional level.

The function concepts mapped by feature genes of CLL
are listed in Table 3. There are some function concepts such
as ‘MAPKKK cascade’, "MAP kinase kinase kinase’, “pro-
tein tyrosine kinase’, ‘protein tyrosine phosphatase’, ‘acti-
vation of JUN kinase’ and ‘small GTPase-mediated
signal transduction’ to be selected. There are published
papers reporting that JUN kinase activation has been
implicated as a major player in the induction of apoptosis
by a number of agents and has also recently been shown to
result in p53 activation and subsequent pS53-mediated
apoptosis in sympathetic neurons [28,29]. These function
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Table 3

Significant function concepts (empirical P < 0.05) mapped by feature genes of CLL samples

Gene name and note Up/down- GO acc Term name Term type

regulation

JAK2 tyrosine kinase; Clone = 789379 1 G0:0000074 Regulation of cell cycle Biological process

BCL-2; Clone = 342181 1 G0:0000074 Regulation of cell cycle Biological process

E2F-4 = pRB-binding transcription factor; Clone = 51058 1 GO0:0000074 Regulation of cell cycle Biological process

Cdc25B = M-phase inducer phosphatase 2; 1 GO:0000074 Regulation of cell cycle Biological process
Clone = 1354190

Cdc25B = M-phase inducer phosphatase 2; -1 GO:0000074 Regulation of cell cycle Biological process
Clone = 786067

Unknown; Clone = 1369098 l G0:0000165 MAPKKK cascade Biological process

MAPKKKS = ASK1 = mitogen-activated kinase kinase 1 GO:0000165 MAPKKK cascade Biological process
kinase 5; Clone = 504877

ICSBP = Interferon concensus sequence binding protein; 1 GO0:0003702 RNA polymerase 11 Molecular function
Clone = 290230 transcription factor

BCL-2; Clone = 342181 1 GO:0003750  Cell cycle regulator Molecular function

JAK2 tyrosine kinase; Clone = 789379 1 GO:0004672  Protein kinase Molecular function

Unknown; Clone = 1369098 1 GO:0004709 MAP kinase kinase kinase Molecular function

MAPKKKS5 = ASK1 = mitogen-activated kinase kinase | GO:0004709 MAP kinase kinase kinase Molecular function
kinase 5; Clone = 504877

JAK2 tyrosine kinase; Clone = 789379 1 GO:0004713  Protein tyrosine kinase Molecular function

SK.AP55 = associates with the protein tyrosine kinase 1 GO:0004713  Protein tyrosine kinase Molecular function
pS9yn in human T-lymphocytes; Clone = 1320051

Lyn = tyrosine kinase: Clone = 1289379 1 GO:0004713  Protein tyrosine kinase Molecular function

FGR tyrosine kinase; Clone = 347751 1 GO0:0004713  Protein tyrosine kinase Motecular function

Cdc25B = M-phase inducer phosphatase 2: | GO:0004725 Protein tyrosine phosphatase Molecular function
Clone = 1354190

Cdc25B = M-phase inducer phosphatase 2; 1 GO:0004725 Protein tyrosine phosphatase Molecular function
Clone = 786067

Unknown UG Hs.5103 ESTs; Clone = 1308105 1 GO:0004725 Protein tyrosine phosphatase Molecular function

Unknown UG Hs.5103 ESTs; Clone = 1308810 1 GO:0004725 Protein tyrosine phosphatase Molecular function

Unknown; Clone = 1370135 | (GO:0004725 Protein tyrosine phosphatase Molecular function

Protein tyrosine phosphatase, non-receptor type 12; 1 GO:0004726 Non-membrane spanning protein Molecular function
Clone = 289965 tyrosine phosphatase

Protein tyrosine phosphatase, non-receptor type 12; 1 GO:0004726 Non-membrane spanning protein Molecular function
Clone = 289965 tyrosine phosphatase

Sphingomyelin phosphodiesterase 2,neutral membrane 1 GO:0004767 Sphingomyelin phosphodiesterase Molecular function
(neutral sphingomyelinase); Clone = 1319288

Neurotrophic tyrosine kinase, receptor. type 3 (TrkC); 1 GO:0005016 Neurotrophin TRKC receptor Molecular function
Clone = 35356

Zinc finger protein 42 MZF-1; Clone = 490387 1 GO0:0006355 Regulation of transcription, Biological process

DNA-dependent

Protein phosphatase 2C gamma; Clone = 530950 1 GO:0006470 Protein amino acid dephosphorylation Biological process

Protein tyrosine phosphatase, non-receptor type 12; 1 GO:0006470 Protein amino acid dephosphorylation Biological process
Clone = 289965

Protein tyrosine phosphatase, non-receptor type 12; 1 GO:0006470  Protein amino acid dephosphorylation Biological process
Clone = 289965

Unknown UG Hs.5103 ESTs: Clone = 1308105 1 GO:0006470 Protein amino acid dephosphorylation Biological process

Unknown UG Hs.5103 ESTs; Clone = 1308810 I GO:0006470 Protein amino acid dephosphorylation Biological process

Unknown; Clone = 1370135 1 GO:0006470  Protein amino acid dephosphorylation Biological process

Protein phosphatase 2C gamma; Clone = 1357352 -1 GO:0006470 Protein amino acid dephosphorylation Biological process

Sphingomyelin phosphodiesterase 2,neutral membrane 1 GO:0006684 Sphingomyelin metabolism Biological process
(neutral sphingomyelinase}; Clone = 1319288

MDA-7 = melanoma differentiation-associated 7 = anti- I GO:0006915  Apoptosis Biological process
proliferative; Clone = 267158

BCL-2: Clone = 342181 1 GO:0006916  Anti-apoptosis Biological process

Titin; Clone = 1251981 1 GO:0006942 Regulation of striated muscle contraction  Biological process

Titin; Clone = 358640 1 GO:0006942 Regulation of striated muscle contraction Biological process

BCL-2; Clone = 342181 1 GO:0006959 Humoral immune response Biological process

CDIC: Clone = 428103 -1 GO:0006960  Antimicrobial humoral response Biological process

{sensu Invertebrata)
Unknown; Clone = 1369098 1 GO:0007257  Activation of JUN kinase Biological process
MAPKKKS = ASK1 = mitogen-activated kinase kinase 1 GO:0007257  Activation of JUN kinase Biological process

kinase 5: Clone = 504877
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Table 3 (continued)

1497

Gene name and note Up/down- GO acc Term name Term type
regulation

Ack = p2lcdc42Hs kinase; Clone = 1143183 1 GO0:0007264  Small GTPase mediated signal Biological process

transduction

ABR = guanine nucleotide regulatory protein; 1 GO:0007264  Small GTPase mediated signal Biological process

Clone = 52408 transduction

BCL-2; Clone = 342181 [ GO:0008189  Apoptosis inhibitor Molecular function

Unknown UG Hs. 117302 ESTs; Clone = 1234067 1 GO:0008283  Cell proliferation Biological process

Vascular endothelial growth factor B; Clone = 1271813 1 GO:0008284  Positive regulation of cell proliferation  Biological process

Vascular endothelial growth factor B; Clone = 167296 1 GO:0008284  Positive regulation of cell proliferation  Biological process

Cdc25B = M-phase inducer phosphatase 2; -1 GO:0008284  Positive regulation of cell proliferation  Biological process

Clone = 1354190

Cdc25B = M-phase inducer phosphatase 2; —-1 GO:0008284  Positive regulation of cell proliferation  Biological process

Clone = 786067

BCL-2; Clone = 342181 1 GO:0008285 Negative regulation of cell proliferation  Biological process

Titin; Clone = 1251981 1 GO:0008307  Structural constituent of muscle Molecular function

Titin; Clone = 358640 1 GO:0008307  Structural constituent of muscle Molecular function

FGR tyrosine kinase; Clone = 347751 1 GO:0009615 Response to viruses Biological process

Protein phosphatase 2C gamma; Clone = 530950 [ GO:0015071  Protein phosphatase type 2C Molecular function

Protein phosphatase 2C gamma; Clone = 1357352 -1 GO:0015071  Protein phosphatase type 2C Molecular function

Table 4

Significant function concepts (empirical P < 0.05) mapped by feature genes of FL samples

Gene name and note

Up/down- GO acc
regulation

Term name

Term type

Unknown: Clone = 1300358

Unknown; Clone = 1300358

SMRT = silencing mediator of retinoid and thyroid
hormone action = co-repressor; Clone = 235911

SMRT = silencing mediator of retinoid and thyroid
hormone action = co-repressor; Clone = 723911

Adenosine triphosphatase, calcium; Clone = 1357222

Adenosine triphosphatase, calcium; Clone = 1335110

SIP-110 = signaling inositol polyphosphate S
phosphatase; Clone = 1305138

Unknown; Clone = 1241453

Interferon gamma receptor beta chain: Clone = 1352434

FGFR4 = Fibroblast growth factor receptor 4; Clone = 784224
CD1351 = platelet-endothelial tetraspan antigen 3; Clone = 310348

Adenosine triphosphatase, calcium; Clone = 1357222
Adenosine triphosphatase, calcium; Clone = 1335110
Unknown; Clone = 1300358

Adenosine triphosphatase, calcium; Clone = 1357222
Adenosine triphosphatase, calcium; Clone = 1335110

CD151 = platelet-endothclial tetraspan antigen 3: Clone = 310348

Unknown; Clone = 1300358

FGFR4 = Fibroblast growth factor receptor 4; Clone = 784224

Interferon gamma receptor beta chain; Clone = 1352434
Interferon gamma receptor beta chain; Clone = 1352434

| GO:0003700
1 GO0:0003713
-1 GO:0003714

-1 GO:0003714

l GO:0004002
1 G0:0004002
1 GO:0004445

1 GO:0004725
1 GO:0004906
-1 G0O:0005007
-1 GO:0005194
1 GO:0005388
| GO:0005388
1 GO:0006366
1 GO:0006832
1 GO:0006832
-1 GO:0007155
1 GO:0007517
-1 GO:0008543
1 GO:0009615
1 GO:0009619

Transcription factor
Transcription co-activator
Transcription co-repressor

Transcription co-repressor

Adenosinetriphosphatase
Adenosinetriphosphatase
Inositol-1,4,5-trisphosphate

Protein tyrosine phosphatase
Interferon-gamma receptor
Fibroblast growth factor receptor
Cell adhesion molecule
Calcium-transporting ATPase
Calcium-transporting ATPase
Transcription from Pol 1l promoter
Small molecule transport

Small molecule transport

Cell adhesion

Muscle development

FGF receptor signaling pathway
Response to viruses

Resistance to pathogenic bacteria

Molecular function
Molecular function
Molecular function

Molecular function

Molecular function
Molecular function
Molecular function

Molecular function
Molecular function
Molecular function
Molecular function
Molecular function
Molecular function
Biological process
Biological process
Biological process
Biological process
Biological process
Biological process
Biological process
Biological process

concepts indicate that two pathways of cellular signal
transduction, tyrosine protein kinase-mitogen activated
protein kinase pathway (TPK-MAPK) and small
GTPase-mediated signal transduction pathway, are both
activated abnormally, which brings on an excessive prolif-
eration of tumor cells. Genes mapped onto function con-
cepts MAPKKK cascade, MAP kinase, protein tyrosine
kinase and activation of JUN kinase are up-regulated
entirely, which means that the TPK-MAPK signal trans-
duction pathway is activated abnormally and persistently.

From the information listed in Table 3, we surmise that
one of the earlier processes is the activation of the protein
tyrosine kinases (JAK2 tyrosine kinase, SKAPS55, lyn,
FGR tyrosine kinase), which results in the activation of
MAPK cascade (MAPKKK, unknown clone = 1369098).
Some researchers report that Protein kinase A (PKA)
and mitogen-activated protein kinases (MAPKSs) have been
involved in the apoptosis of B-CLL cells [30,31]. However,
all the genes associated with protein tyrosine phosphatase
are also up-regulated. It is possible that the level of protein
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tyrosine phosphatase is correspondingly up-regulated in
order to keep a low level of tyrosine phosphorylation, while
the expression level of tyrosine kinase is up-regulated. In
addition, genes linked to another signal transduction path-
way, a small GTPase-mediated signal transduction, are
also over-expressed entirely. This means such a pathway
is also activated, but now we fail to find any related
research to confirm it. Significant function concepts we
have found confirm such a theory further [32] that the
occurrence of a tumor has a close relationship with signal
transduction.

. The function concepts mapped by feature genes of FL
are listed in Table 4. Some function concepts such as ‘tran-
scription factor’, ’transcription co-activator’ and ‘tran-
scription co-repressor’ are selected. Genes mapped onto
‘transcription factor’ and ’transcription co-activator’ are
over-expressed and ‘transcription co-repressor’ are down-
expressed, which is consistent with tumor pathogenesis.
‘Adenosinetriphosphatase’, ‘calcium-transporting ATP-
ase’, ‘protein tyrosine phosphatase’ and ‘inositol-1,4,5-tris-
phosphate’ function concepts are also selected, and genes
mapped onto them are over-expressed; however, presently
no evidence supports the relationship of these function
concepts with FL.

Ir

Accuracy

. L
Original Fine Corel Core2 Core3 Core4
forest  forest forest forest forest  forest
Fig. 3. Classitying performance cvaluation of feature genes and hierar-
chical gene cores. Core N forest (N =1, 2, ..., 4) is core forest at N level,

which means that feature subsets for any class used to classify are fine
feature subsets including gene cores at the Nth level.

Table §

To investigate whether the genes in the molecular mech-
anisms can classify these subtypes of lymphoma well, we
use the Two-Level Integrating Evaluation Machine [7] to
assess the classifying performance (accuracy) of the fine
forest and hierarchical core forest and to compare it with
the original forest when ten series of validation sets are
fixed. Results in Fig. 3 show that the average accuracy of
fine forest reaches 86.50%, which is remarkably higher than
that of original forest (54.32%). Such a classifying perfor-
mance is also high compared with that of other classifying
algorithms for multi-class samples [6]. Moreover, accuracy
of deeper-level core forest does not noticeably reduce along
with the decrease of the number of genes in core forest.

In the feature selection approach, we performed external
cross-validation [7], then with a validation set and separate
classifiers we carried out feature gene subset selection. The
classifiers considered are Fisher linear discrimination,
Logit nonlinear discrimination, Mahal distance and K-
nearest neighbor classifier. We applied a threefold cross-
validation to assess the two-class discriminating ability of
feature genes included in gene cores at the deepest level
(core genes). At the same time, the same numbers of genes
were sampled randomly from all genes to do the same
work, and to assure randomness, the random sampling
was repeated ten times. Results listed in Table 5 show that
two-class discriminating ability of core genes is markedly
higher than that of the randomly sampled genes, especially,
when Fisher linear discrimination, Logit nonlinear discrim-
ination and Mahal distance discrimination are used, the
accuracy of core genes can reach around 90%.

4. Conclusion

Our approach reported in this paper extended our previ-
ously developed ensemble decision approach. Both
approaches aim to mine disease-relevant genes for the clas-
sification of biological types. However, they are different.
Firstly, our approaches analyze the multiple heterogeneous
phenotypes with another discriminant index 6 with which
selected subsets would distinguish positive and negative

Two-class classifying performance evaluation of core genes with Fisher linear discriminate, Logit nonlinear discriminate, Mahal distance and K-nearest

neighbor classifier

Phenotypes Classifier
Fisher linear discrimination Logit nonlinear discrimination K-nearest neighbor Mabhal distance
(Mean + SD) {Mean £+ SD) {Mean + SD) (Mean + SD)
GCB-like-DLBC Core genes 0.8536 + 0.0996 0.8248 +£0.1104 09114 +0.0348 0.6746 +0.1174
Random genes 0.7449 +0.1020 0.7368 + 0.0921 0.7658 + 0.0740 0.5096 + 0.1844
AB-like-DLBCL Core genes 0.9116 £ 0.0631 0.9233 + 0.0625 0.8678 + 0.0839 0.7531 +0.0755
Random genes 0.7574 + 0.1050 0.6975 4+ 0.1018 0.7863 +0.0823 0.4573 £ 0.2164
CLL Core genes 1.0000 =+ 0.0000 0.9976 £ 0.0118 0.9672 +0.0482 0.8156 4- 0.1070
Random genes 0.8997 £ 0.0821 0.8929 4 0.0636 0.9117 +0.0679 0.3384 +£0.1647
FL Core genes 0.9275 £ 0.0514 0.9299 4 0.0379 0.8836 +0.0705 0.5531 £0.0792
Random genes 0.8451 +0.0932 0.8883 + 0.0662 0.9182 +0.0618 0.3493 £ 0.2209
Normal Core genes 0.8869 + 0.0925 0.8663 &+ 0.0921 0.8389 + 0.0601 0.8834 + 0.0727
Random genes 0.7453 £ 0.1071 0.8413 £ 0.0965 0.7990 &+ 0.0742 0.4121 £0.1239
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phenotypes in a highly unbalanced class distribution. Sec-
ondly, by the supervision of classifying the performance
of some so-called ‘redundant’ genes we retrieved as many
redundant genes as possible, which are very important in
elucidating the complex genetic architecture of a complex
disease. Finally, in addition to the single gene marker, sig-
nificant function concepts found by mapping genes onto a
gene function classifying frame Gene Ontology are ana-
lyzed, which avoids unnecessary loss of important genes
during the microarray design, and improves the interpret-
ability of the data mining results.

In our study, we proposed a method for the extraction
of critical disease-relevant genes through multiple feature
subsets, each being selected based on its classifying perfor-
mance. By retrieving the ‘redundant’ genes, the majority of
strongly relevant and partially relevant genes can be iden-
tified. Our findings support our speculation that retrieving
feature genes is efficient for extracting ‘redundant’ genes.
For example, gene SMRT, has two clones that have been
both identified. By mapping these relevant genes onto
GO, the molecular bridge of multiple phenotypes elucidat-
ing the disease mechanism is unraveled, which may provide
valuable clues for the further research.

Feature genes and hierarchical gene cores identified by
our method have achieved accuracy in the classification
of multiple phenotypes. In the study, we performed exter-
nal cross-validations. Using external classifiers we obtained
an unbiased estimate of the classification performance of
the deepest gene cores, and a high accuracy which shows
gene cores definitely have discriminate ability of subtypes
of lymphoma. In the future, genes in gene cores which lack
function annotations need further investigations.
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